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Abstract

This paper describes an efficient Monte Carlo sampling plan e,
for estimating the distribution of maximum flow in a directed

network whose arcs have random capacities. Such a network can be

used to represent a multi-state system whose multi-state
components are subject to deterioration in capacity by random i;;;
amounts at random points in time. The proposed sampling plan :jjS
uses an easily computed a priori upper bound on the complementary
distribution function to obtain an unbiased point estimator with
smaller variance than crude Monte Carlo sampling allows.
The paper also describes procedures for interval estimation and
for assessing when the sampling experiment has achieved a
specified accuracy. To facilitate sampling, the paper presents

a characterization of deterioration based on cumulative

processes, leading to the treatment of arc capacities as being
multinormally distributed. A technique is described for checking

the appropriateness of this model with regard to lower and upper

bounds on capacity. A procedure is also described for deriving a
confidence interval on the measure used to assess variance

reduction., An example illustrates the sampling plan and a concise

summary gives all steps needed to implement the plan.

Key words: Maximum flow, Monte Carlo sampling, multi-state
reliability
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Introduction

This paper describes a method for estimating the
complementary distribution function of maximum flow in a
multi-state reliability system whose components have capacities
that decrease randomly through time and for which maximum flow
characterizes system performance. River systems with
accumulating silt deposits and distributed manufacturing systems
whose individual processing units deterioriate through time
provide two examples of such multi-state systems. Although a
considerable literature has developed on the reliability of
multi-state systems with multi-state components that exhibit
random deterioration in performance, this literature mostly
concentrates on characterizing properties of performance measures
induced by the inherent features of broad classes of multi-state

systems. For example, see Barlow and Wu (1978), Baxter and Kim

(1984), Block and Savits (1984) and Mak (1985). A considerably
more modest literature exists for the equally important topic of
computing multi-state performance measures. For example, see
Butler (1982), Hudson and Kaper (1985) and Kulkarni and Adlakha
(1985).

The present paper is a contribution to this computational
literature. Specifically, it characterizes system performance by
the concept of maximum flow and describes a Monte Carlo sampling

plan for estimating the complementary distribution of maximum

flow with considerably better statistical accuracy than crude

)

. " 3

Monte Carlo sampling would allow for the same cost. For
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convenience of exposition, we use the nomenclature of network

. analysis to characterjize a system. Although the emphasis

throughout this paper is on system reliability, the methods

described here clearly apply more generally to the considerably

. broader class of maximum flow problems with capacities subject to
random variation.

Let G = (V,E,s,t) denote a directed network with node set

V, arc set E = {1,...,n}, source node s and sink node t

s,teV. At time 120, arcs which represent the components of the

system have capacities By(t),...,Bp{(tr). The capacity of each arc

AR I

h is subject to deterioration so that Bj;(t) 2 B;j(t+a) A20 15isn,

The times at which the deteriorations occur are random, as are

v W ¥ = .

Pt

AN . H o
S . .

the magnitudes of the incremental deteriorations themselves. Let

I' denote the set of all minimal s-t cutsets of G and define

P the capacity of cutset C at time 1 as
?a z(t,c) = ) Bi(T) Cerl.
° ieC
If capacities were deterministic rather than random, then a
measure of system status for each time 11 would be
) .
b A{t) = min Z{(t,C). (1)
o Cerl
ﬁi As is well known from the max~-flow min-cut theorem of Ford and
3 Fulkerson (1956), A(t) 1is the maximum possible flow from source
P
p: node 8 to sink node t at time 1. Then the function {A(T) 120}
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shows the pattern of deterioration in performance in G as time
evolves,

When capacities are random, (1) no longer provides an
adequate measure of system performance since {A(T) 120} is now
a stochastic process. Then for fixed 120 interest focuses on

Lix,1) = prlAa(t)>x] x20. (2)

Also, for fixed x20 interest may focus on the first passage time

-
1l

minfz: A(z)sSx]

for which

Lix,1). (3)

pr(1x>1)

Then for each 120 {L(x,1), x20} gives the complementary
distribution function of maximum flow and for each x20 {L(x,1),
120} gives the first passage time complementary distribution
function.

Other measures of system performance also are of interest.
For example,

L(x,C,1) = pr{Z(t,C) = A(1) and A(1)>x] (u)

denotes the probability that C is the c¢critical minimal s-t
cutset and that the maximum flow exceeds x at time 1. Then

L(c,1 x) L{x,C,t)/L(x,1) (5)

probability that C is the critical minimal s-t
cutset, given that the maximum flow exceeds x at

time <.
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Relatively, little work has appeared on the numerical
evaluation of the measures (2) through (5). Somers (1982)
describes a procedure for computing (2) exactly for the cases of
one and two arcs with random capacities and n-1 and n-2 arcs with
fixed capacities, respectively, and notes that the computation
time for n randomly capacitated arcs grows exponentially with n.
Assuming independent exponentially distributed arc capacities in
a planar network, Kulkarni and Adlakha (1985) show how to compute
(2) exactly in OC |V| + |E] )time, using the max-flow algorithm of
Itai and Shiloach (1979).

Frank and Frisch (1971) provide a comprehensive discussion
of the randomly capacitated maximum flow problem with regard to
the computation of (2). Their discussion, which is principally in
terms of normally distributed arc capacities, gives lower and
upper bounds. Because of the difficulty of computation for even
moderately sized networks, they suggest a crude Monte Carlo
sampling plan to estimate (2).

The present paper describes a Monte Carlo sampling plan for
estimating (2) that employs an easily computed upper bound to
gain its computational advantage. In particular, this bound
enables one to modify sampling in a way that reduces the sampling
variation inherent in each trial, thereby reducing the sample
size required to achieve a specified accuracy of estimate when
compared to crude Monte Carlo sampling. Although the paper

concentrates exclusively on (2), one should note that repeated
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application of the proposed sampling plan for a selected set of
times 1 would also allow estimation of (3).

To set the stage for the proposed method, Section 1
describes a prototypical crude Monte Carlo sampling plan that
remains the basis for comparison throughout the paper. Section 2
presents an improved sampling plan that exploits a priori
information on the upper bound to improve statistical efficiency.
The plan includes point and interval estimation. Section 3
describes a particular model of component capacity deterioration
in a network that enables one to regard capacities on individul
arcs as being multinormally distributed. This model greatly
facilitates the use of the proposed sampling plan. The section
also describes how to assess the appropriateness of the normal
model with regard to lower and upper bounds on capacity.

Section 4 presents a procedure to guide the choice of when
to stop sampling and Section 5 describes inferential methods for
assessing the extent of variance reduction. An example in

Section 6 illustrates the proposed procedures in detail and

Section 7 summarizes the essential steps in Sections 2 through 5

to implement the proposed sampling plan.

1. Crude Monte Carlo Sampling

Frocedure MFCRUDE describes the steps to be performed in -
f carrying out a crude Monte Carlo sampling plan designed to

g estimate {L(x,r) xeX} from data on K independent trials or
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replications. Here EK(x,r) is an unbiased estimate of

L(x,1) with
var EK(X.T) = L(x,1) [1-L(x,1)]/K.

Moreover, V(EK(x,t)) in step III is an unbiased estimatcr of

var EK(x,r). Note that in step II sampling usually takes 0(n)

time per replication, However, the dominant time consumer is the
determination of maximum flow; for example, taking O0( |V| 1og |V] )
time per replication for a planar network (Itai and Shiloach
1979).

With regard to computing the cell number J in step II,

choosing the flow set as xi = a+fi a,B8>0 i=1,...,r offers
an advantage. Then for continuous A(CT), one has
j = Lmin{r,[A(r)-a]*/B}J so that the time to determine j is

constant and independent of r,. If the set of flows X does not
admit the representation xj = a+Bi, it always will be beneficial
to augment the set so that it does.

Procedure MFCRUDE represenf% a baseline sampling experiment
against which one needs to compare any alternative candidate
sampling experiment with regard to the presumably smaller
resulting variances of interest and the usually larger computing
time required per replication to realize these variances.

Section 2 describes one such alternative sampling plan based on

an easily derivable upper bound on {L(x,1)}.
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E Procedure MFCRUDE
f Purpose: To estimate (2) for specified time 1 and selected flow
i - levels X = [x0=0<x1<...<xr}.

Input: Network G = (V,E={1,...,n},s,t), time 1, joint

distribution of capacities, flow set X and number of

i independent replications K.

Output: {[Lg(x,1), V(Lg(x,1)); xeX} as estimators of

{L(x,1), varLg(x,t); xeX}, and {AS(x) xeX| as an
; available input to continued sampling.
i Method:
I. Initialization

i Set AS(xj) = 0 i=0,1,...,r.
:; II. Sampling Experiment
. On each of K independent replications: sample the
i capacities By(1),...,Bp(1) from the joint distribution;
| determine the maximum flow A(T) compute j = max[i:
X{<A(T) 120,1,...,nT; AS(xj) = 8S(xj) + 1.
; III. Computation of Summary Statistics
- 1 ¢
f? LK(xi.r) = - jzi AS(xJ) <icr
® V(L (x,,1)) = Lo(x ,t){1-L (x. ,1)1/(K-1).
- K'71 K 71 K*7i’
E% End of Procedure
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2. Exploiting Bounds

The plan to be described here concentrates sampling in a
region of the sample space of By(t),...,Bp{1) where each
collected sample outcome contains considerably more information
than in the crude Monte Carlo case. Let

H(x,C,1) = {Z(C,t)>x}

so that (2) has the form

L{x, 1) pr{ M H{(x,C,t)]

Cel

M(x,1) N(x,t)

where for Tq = I'1(x,1) < T

M(x,t) = pr[ N H(x,C,1) N H(x,C,1)]
Cel-T CeT
1 1
and
N(x,t) = pr[ M H(x,C,1)].
CeT
1
Let
H1(x,1) = N H(x,C,1)

CeI‘1

and suppose that N{x, 1) can be computed exactly. Then to
estimate L(x,t1) one proceeds as follows:
On each of K independent replications sample
B(t) = (81(1),...,Bn(1)) subject to the restriction HI(X,T);

determine the maximum flow A(t); set ¢ = (A{1)) where

Lix, =)

IA denotes the indicator function on the set A.

.....
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ﬁK(x,T)

where the superscript (k) denotes trial k, is an unbiased

estimator of M(x,t1) and

LK(X,T) N(x, 1) MK(X,T) (6)

is an unbiased estimator of L(x,t) with

L{x,t) [N(x,1) - L(x,1)]/K. (N

var ﬁK(x,I)

Observe that

var ﬁK(x,x) $ N(x,1)/U4K
which can be a considerably tighter upper bound than that of 1/4K
for var EK(x,r). More importantly, note that

var ﬂK(x,T) 1 - L{(x,t) 1
, (8)

var ﬁK(x,r) N(x,t) - L(x,1) N(x,1)

indicating that to achieve

var iK {x,1) = var L, (x,1)
1 2

the ratio Kq1/K, must be greater than or equal to 1/N(x,t).
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:?i The variance ratio in (8) is merely one measure of benefit. -ﬂfﬁ
?E Let T and T denote the mean times required to perform one géﬁ
i{ replication with crude sampling and with the bound respectively. :£S§
P Then T/T provides a second measure of performance and is usually :.,:_v.‘:f
less than unity. As a single measure of merit the quantity : E

var L (x,1)
: X (9) -
var LK(x,r) HQ;E

R(X'T) =

=t |-

is commonly used in the Monte Carlo literature. This quantity,

called the variance reduction ratio, measures the amount of time

one would have to run the crude Monte Carlo experiment to achieve .

the same variance as one would achieve using the proposed method ;i»ﬂ
- 4

in one unit of time. Clearly R(x,t)>1 indicates that the T
proposed method is preferred. Section 5 describes inferential

methods of estimating (9) from sample data at the end of an

experiment.

Choosing Hi(x,t)

In selecting H1(x,1) one needs to consider several issues.
First, N(x,1) must be computable. If arc capacities are
statistically independent and the cutsets in ri(x,1) are

edge-disjoint, then

N(X,T) = I PY‘[H(X;CyT)Jn (10) -'::
CEF1(x,T) :
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whose computation takes O0(Jrqy(x,t)|) time, once the

pr{H(x,C,t)] are determined.

To estimate L(x,t) for just one flow value x, one may want

to choose Tj(x,1) to be the set of edge-disjoint minimal s-t ii;f
cutsets that minimizes (10). Unfortunately, the determination of
this F1(X.T) is NP-complete., Moreover, since one customarily RIS
estimates the complementary distribution function for several
flow values, it becomes necessary on each replication to insure
that Hy(x,t) holds for each x in X, If I'qy(x,t) contains more B
than one cutset, this can entail considerable resampling thereby

increasing computation time substantially. To reduce this

sampling frequency, we describe an alternative method.

Let T* denote a set of edge-disjoint minimal s-t cutsets,

let X = {Xg=0<x1<...<xp| denote the set of flows of interest and
define <l
i-1 2
P.(D,1) = pr{H(x,,D,1)NL N H(x_,C(x,,1),1)]} per* Bty
1 i §=1 J J Y
-

where

Clx ,1) = {c: cer® | P (CyT) S P(D,1) Der*}. (1) .
(
Here C(xi,t) minimizes Pi(D,r) at flow X Now redefine BN
N(Xi,T) = pr JT1 H(xj,C(xJ,r),T)] (12) e
{

which i{s again an upper bound on L(xi,r). While it is true that
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N(Xi,T) 2 pr( é?r* H(Xi.C.T)], (13)

using [C(xi,r) 1Sisr|. as defined in (11), makes resampling s

necessary for at most one constraint H(xj,C{(xj,1),1) at step i

L]

in contrast to the potential sampling for the |F*| constraints

N H(xi,C,t) that are active on each step if one chooses to use e

all cutsets in r*. Note that one can determine a set of
edge-disjoint cutsets r* = {C1,...,CJ} in 0(n) time where J is

the size of smallest minimal s-t path. Procedure A shows how to ‘Q§5

determine [C(xi,r) 15isr} given r*.

Procedure MFBOUNDS shows how to perform K independent
replications to estimate (2) for {c(xi,r), N(xi.r)} as determined

in Procedure A. Note that at step i and i constraints

i
N H(XJ,C(XJ,T),T) are in force, although only meeting
J=1

H(Xi,C(Xi,T),T) may induce resampling. Since the probability of

resampling at step i22 is

pr[Z(C(xi,t),1)>xi] -
pP[Z(C(xi.r).1)>xJ(i;j ' .?ﬁf

where

J{i) = max {k: Clx, 1)

Cix, ,t)} if C(xi.1)e[C(xk.1) 1<k<i |
1SKk<i !

=0 otherwise, ST
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the mean number of sampled capacities on each trial in Procedure

MFBOUND 1is

PP[Z(C(xi.T),T)>xi] }

r
n+ ) C(x,,t) 1 -
{22 i { pr[Z(C(xi,r),r)>xj(i)]

and an upper bound on the mean number of maximum flow

determinations 1is

E pr[Z(C(xi,T).1)>xi]
ioo pr[Z(C(xilt)’T)>xj(i)]

r -

By contrast, Procedure MFCRUDE samples n capacities and

determines maximum flow just once per replication. Therefore,

Procedure MFBOUNDS clearly takes more time per replication than

Procedure MFCRUDE does.
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Procedure A

Purpose: To compute an upper bound for {pria(t)>x] xeX}.

Input: Edge-disjoint minimal s-t cutsets r* = {Cq,...,Cgl,
flow set X = {xg=0<xy<...<xp}, time <t and
{prlH(xy,Cy,1)]; 1sisr, 15jsd}.

Output: fc(xj,1), N(xi,1) 1sisr}.

Method: Find the smallest m that minimizes pr[H(x{,Cp,t)] for
all 1smsJ; set C(xq,1) = Cp; set N(xq,1) =
priH(xq,C{(xq,1),1]; i=1.

Until i=r:

A. Find the smallest m that minimizes

i- set N(x, ,,1) = N(x;,1) prlH(x; ,C(x, 1), 1) ].
i B. If Cpy € {C(xj,T) 1sjsi}: determine the largest j
; such that C(xj,t) = Cp; set

N(xi+1,1) = N(xj4q,1)/pr[H(x3,C(x5,1),1)].
] c. i=i+1.
%

End of procedure

i
pr{H(xi+1,Cm,t)ﬂ[jQ1H(Xj,C(xj,r),T)]} for all 1smsJ;
set Clx, , 1) = C_;
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Purpose: To estimate (2) for specified time 1 and selected

Input: Network G = (V,E = {1,...,n},s,t), time 1, joint

_]5_

Procedure MFBOUNDS

flow levels X = {x0=0<x1<...<xr}.

distribution of capacities, flow set X,

{c(x,t),N(x,1) as determined in Procedure A; xeX|]

and number of independent replications K.

Qutput: {iK(x,x), V(ﬁK(x,T)); xeX} as estimators of {L(x,1),

var EK(x,r); xeX} and {S(x) xeX x:xo}, as an available

input to continued sampling.

Method:

I.

II.

LI P T AT A S S L T P I L TN T T
PN PN P R O I S SR P i U IO TR D W

Initialization

Set C{xg,1) = C(xq,1); set S(x;) =0 1sisr.

Sampling Experiment

For each of K independent replications do:

A. Sample capacities {Bj(1) 1sisn} from the joint distribu-
tion subject to the restriction H(xy,C(xg,1),1).

B. Compute maximum flow A(T1).

C. Set Z = Z(1,C(xg,1)).
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. 3. Otherwise:

o a. If C(x;,1) = Clx;_4»7), set Z = Z(t,C(x3,1)).

b. If 2 s x;: resample {Bj(r) jeC(xi,r)} subject to

- H(x,,C(x,t),1); set Z = } B.(1); compute
_ i i . J

) JeC(xi,r)

;i maximum flow A(t); if A(r))xi § = 1.

b, S(xi) = S(xi) + 5.

® III. Compute summary statistics

-~

LK(xj,r)

N(XJ,T) S(xj)/K

1sjsr.

]

-~ 2 _ _
V(LK(XJ:T)) N“(x.,1) [S(xj)/K] [1 S(xj)/K]/(K 1).

J

End of Procedure

Confidence Intervals
; While variances give an indication of statistical accuracy S ;g
some studies call for the construction of confidence intervals

for estimates of interest at a specified level of significance

° a O<a<!. Let L = L(x,t), N = N(x,1) and S = S(x) for xeX
. where S(+) is given in Procedure MFBOUNDS. Since S{x) has the

binomial distribution with parameters K and L(x,t)/N(x,1), it is

:
@
Ei L(x,t). However, as pointed out in detail in Fishman (1984), the

in principle possible to derive exact confidence intervals for
l';':
A
K.
r
7
\: - . " -
e L e AR R LR i e e e i



.
"
]
Y
N

T[T

B A

_17_

numerical evaluation of the interval becomes increasingly
difficult as K increases. Here we describe two alternatives.

For binomial samples, the results in Okamoto (1958) enable
one to show that (Nyjq, Nyp) covers L with probability exceeding a
where Yy < ¢pp are the solutions of the equation
(K-S)In(1-y)+S lny = In{{1-a)/2]+(K-8)1n(1-8/K)+S 1n(S/K). (14a)
For a > .9 these bounds are considerably tighter than those that

Chebyshev's inequality produces. Also, the interval

1
NS + NB2/2 + BN[B2/4 + S(K-S)/K]%

(14p)
K + 82
asymptotically (K#=) covers L with probability a and
, 2
B = {y: (21!)_/2 J e~ X /2 dx = {(1+a)/2}. (15)

Employing the tighter normal result requires care. If
L{x,t)/N(x,1) is close to zero or unity then convergence to
normality is slow and the normal interval can be misleading. One
indicator of the extent of convergence is the skewness measure

ELL, (x,T)-Llx,1) 1> N(x,1)-2L(x,1)

QK = . = |/ (16)
(var LK(X,T)]3/2 {KL(x,t)IN(x,t)-L(x,t)]}"

A skewness close to zero supports the contention of normality.

Section 6 uses a sample value for QK to make this assessment.

N S N
T R
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Occasionally it may be of interest to compute simultaneous
confidence intervals for, say, [L{(x,1) xeX®}] where Xx*cx is a
i finite set of flows. Then the |X*| Okamoto confidence intervals

that result from (14a) hold simultaneously with probability of at
least a when 1-(1-a)/ |X*] replaces a in (14a). Also,
i confidence intervals based on normality (14b) hold asymptotically

when this same substitution for a is made in (15). These

simultaneous interval results follow from a Bonferroni inequality.

; See Miller (1981, p. 8).

i 3. Characterizing Deterioration Through Time

iy At least two distinct characterizations exist for
i multi-state systems with random capacities for which maximum flow

is a performance measure, One representation views systen
4; components as experiencing successive moderate-to-small capacity
reductions of random magnitude at a sequence of random points in
time. The second views the components as either operating at
full capacity or as failed at random points in time. The present
paper focuses on the first characterization and adopts a
formulation from the theory of cumulative processes, as described
in Smith (1955), to facilitate the estimation of {L(x,1)}.
Let Tij denote the time at which the ith capacity
reduction occurs to component j so that T§j < Tkj k=i+1, i+2,....

-1, . tT..20; i=1,2,...} j=1,...,q form g

Assume that [Tij -1, 0j

independent stationary renewal processes with

. Ve LA R T T - . - P . . . B D, . <. . . o . P - B . . . .
PP SIS DI SN SR AP RO S A B S A P A T S TR R S N AT e et . IR




E:(ti )

~T1, .
J i-1,3

and

var (Tij-Ti'1,j)

We conceive of 133 as the time
in arc set Ej where

Ej n Exk = @ J=k

E = El+. . .+Eq.
Define
Aij = reduction in capacity on arc jJ at
time 1y

and for each j take A1j5, Apjs-... to be independent and

identically distributed (i.i.d.) random variables with

RN G N B RN AT .
N A AT AT AT T TR T T
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<

i=1,2,...5 J=1,...

of the ith degradation for arc i T

EAij Yj  »
var Aij = Aj o
corr(Aij,Aik) = pjk if JEEk
= 0 otherwise
and
corr(Aij,rik-ri_1’k) = u if jeE,
: =0 otherwise.
Let
; J(1,Eg) = number of degradation times in [0,1] 1in set Ey
g so that at time 1t the accumulated degradation on arc j in set
- Ek is
e e e e fe S e e T ‘.-" LIPS R L AT .. . . - A N :
T N o P TR I Y A A S A W T T A L bbbt o it




- 7 Kk

Yj(r) if J(I,Ek) > 0

A, .
1)
=0 otherwise

and the capacity of arc is

Bj(r) = Bj(O) - YJ(T).

As 1 » ®, one has (Smith 1955) for arcs j,meEy

Yj(r) = HyT + o(1),

where o(t) denotes a function h(1) such that 1lim h(<)/t = 0, g
‘[")Q .'
My T e
var Y. = .. + 0 ’ "
J('t) OJJT (1)

6.. = [A. - 2w.(Y./a, J(B A.)l/z + B (Y./a )2]/a ,

JJ J J Ok k™ J k' 'J Tk k
and -~

cov [Yj(r),Ym(r)] = OypT + o(1) ir JeE
= 0 otherwise

where

1J J

Moreover, as 1T+ @ t he jJoint distribution

) 1 1 -
. Y _ % } A 2 IR
055 = [ojp(rsig) wiY (B A ) ey = e Y (8 A )% ey B Y Y /a1y . o

of
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1
{[Bj(r) - BJ(O) + quJ/-r/2 jeE} converges to the multinormal
distribution with mean vector 0 and covariance matrix
r =] °ij'|' Then, for large 1t {Z(1,C) CeT} are approximately

normal with

EZ(t,C) = )} [B,(0) - u_ ]
jec  d J
and C,DerT.
cov [Z(1,C), Z(1,D)] = =« ¥ 9,
i,jecnp 9

When this formulation in terms of cumulative processes
applies, it offers many conveniences for Monte Carlo sampling.
Observe that, because of the asymptotic normality, the sampling
distribution of Bq(1),...,Ba(1) requires knowledge only of the
initial capacities {Bj(0) 1sisn}, the means {u; 1sisn} and
the covariances {Uij 1Si,j5n}. In particular, note that the
covariances {°ij isj} completely characterize statistical
dependence in capacity changes on different arcs. It is entirely
plausible that one can derive suitable empirical estimates of
these quantities from time series or cross~-sectional data for
multi-state systems encountered in practice. Moreover, sampling
{Bj(r) jeC} subject to H(x,C,t) is easily realized using the
conditional properties of the normal distribution and Algorithm
RSNB in Cheng (1981,pp.314-315), which takes 0(| C |) time.

Two restrictions need to be kept in mind when assessing the

suitability of this probabilistic model. They are




-
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max [B.(t) - B,(0)] s 0 (18)
jekE J
and
min B,{(1) 2 0, (19)
JeE

which reality demands with probability one but to which normal
theory assigns some positive probability less than unity. In the
case of statistically independent capacities this probability is
T - o(t) where

B.(0) - p.1
j . :

J A
~ of-vyu. /0. . 20
uJ(r oJJ) (20)

n
(1) = 1 - 1 |¢ Y
=1 (o,.1)?

JJ
and ¢(-) denotes the standard normal distribution function,
Clearly 1 - o(1) should be small before one accepts the
suitability of the normal approximation. As an additional
precaution when using the normal model one can use
max{0, min[Bj(O), Bj(r)]} in place of Bj(r) for the capacity

of arc j at time 11 in Procedure MFBQUNDS.

b, Credibility Analysis

There remains the question of how large K should be in
order to ensure the level of statistical accuracy required for a
particular study. As examples, one may want to estimate L(x,t)

subject to the absolute error criterion

I, (x,¢e) = {IEK(x.r)-L(x,T)ISe} £>0 (21)

or the relative error c¢criterion
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I(x,0) = {IiK(X,T)'L(X,T)ISmL(x,T)} 0<w< 1. (22)
g Some studies may demand that the least criterion i}j'
:' 13(X,E,w) = I.l(XvE)UIZ(x,N) (23)
[
ii be satisfied and others may demand that both criteria -t
. - Iu(x,s,m) = 11(X,€) nIZ(X.w) (24)
L-.

be met, Here I3(x,c,w) is the least stringent and Ip(x,e,w) is

the most stringent.

Since S(x) in Procedure MFBOUNDS has the binomial

distribution with parameters K and

p(x) = L(x,t)/N{(x,1),

satisfying Iy(x,e,w) = I (x,e) is equivalent to requiring that

wlxdelu, ((x), u:(x)], where

(X)) = [S(x)/K-e/N(x, 1)) :
and (25) .
* + T
u1(x) = 1-[1-8S(x)/K-e/N(x,1)] ,
and satisfying Io(x,e,w) = Io(x,w) is equivalent to requiring
that u(x)elu,,(x),ps(x) "
at wlxdelu, (x),u,(x ] where <
”2*(X) = S(x)/K(1+uw)
h‘".
and (26) -
IO
.:\'.:.
o
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u;(x) - 1-[1-8(x)/K{1-w)1".

*
Moreover, satisfying 13(x,e,w) implies u(x)s[u3*(x).u3(x)], where

u3*(x) = min[u1*(X).u2*(X)]

and (27)

* * * t:-x

wy(0 = maxu (0 ,u,(x) 1, g
and satisfying I,(x,e,w) implies u(x)e[uu*(X).u:(X)] where ;ﬁi}

Myx (%) = maxluy (XD, up, (x)] -

and (28)

* * * :tzk
uu(x) min[u1(x):u2(x)]° .‘,'.:'

That is, for S=S(x)

L}

1-prlI (x,e,0)] pr{uCx)pluy(x),u(x)1}

(29)

1 - FS(K.uj,(x))+FS(x,u;(x)) 15554,

F being the binomial distribution function. -:fﬁi
For sets of flows X = {xq<...<xp}, absolute errors

l€e1,...,ep} and relative errors {wy,...,up},

. R
1-pr[ig11j(xi.ci.wi)] S A, iﬁ;ff

"—.—".—“

where R
4
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;3¢
r *
Ay = 151 D1 -FgKougu (x D) +Fg(Koug (%)) ] 1sksh, (30)

the upper bound following again from a Bonferroni inequality

(Tong 1980, p.143).

To guide the choice of sample size, one can increase K in

steps, compute the bound corresponding to the chosen criterion at

the end of each step and use the sequence of such values as a
measure of the credibility of having satisfied the criterion. To j
ensure some progress in the value of the bound, increments in K N

should be relative. Doubling K at each step is a reasonable

choice. IMSL (1982) and SAS (1982) provide routines for

evaluating the binomial distribution with high accuracy. Note
that in contrast to the discussion on confidence intervals in
Section 3, the development here reljies on the exact binomial

distribution.

5. Estimating Variance Reduction

As Section 3 notes, (9) indicates the benefits of variance

reduction. One can estimate this quantity by A
- T -
R(x,1) = — x Q(x,1) (26)
T o
where ‘%
Qlx,1) = [1-Ly (x, 1) I/IN(x, D)=L (x, 1) ], S
-
g A R e e e S T T T e S e N S T T
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",’r“.'i
T and T being the sample mean times per replication for Procedures 333
I -
MFCRUDE and MFBOUNDS respectively. Although T/T generally is a S
A
relatively stable quantity, 5(x.1) may not be, especially when St
L(x,t1) is close to N(x,t). Therefore, relying solely on (26)
as an indicator of variance reduction can be misleading. To
resolve this problem, one can compute a confidence interval for .
R(x,t) in (9). e
Let N = N(x,t), L = EK(x,T) and R = R(x,t), so that [OCN
Y = 1-L - R(N-L) .
has mean zero and R
var Y = (NR-1)(1-N)/K T
Then Chebyshev's inequality gives N
| 1-L-R(N-L) | 1 o
pr < > a =

[(NR-1)(1-N)/K1%2 (1-a)%

yielding a 100 x a confidence interval

(1-L)(N-L) + 8°N(1-N)/2K + 8(1-N)[(N-L)L/K + re,2N‘2/1u<2]l/2
(N-L)°

(27)

1
with g = 1/(1-a)4- If warranted, a tighter normal interval with 8 T
computed as in (15) can be used.
6. Example

Figure 1 shows a directed network for which we wish to

estimate {L(x,1)} for v = 500 and X = {800 + 100i i=1,...,12}.
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Table 1 gives the corresponding arc parameters. Since

Insert Fig. 1 and Tables 1, 2 and 3 about here.

©(500) = .0172 in (20) the normal model is reasonable. The
selected set of edge-disjoint cutsets is Cq = {1,2,3},
Cp = {14,24,25}, and c3 = {5,6,9,10,12}. Table 2 shows {C(xi.t),
N(Xi,T) 1$i$r}. Table 3 shows the results of using Procedure
MFBOUNDS for K = 65536 independent trials. 1In addition to the
favorable variance reduction for all x, note the wide confidence
intervals for R(x,1) for 900 $ x £ 1400, reflecting the
closeness of the upper bound N(x,t) to L(x,t). Also, note the
substantial variance reduction for x 2 1800 and the fact that
variance reduction is not monotone in x.

Figure 2 provides an understanding of this nonmonotone

behavior. These cutsets act as the principal restrictions on

Insert Fig. 2 about here.

capacity when looking at flows in the interval [0, 2000]. For
small x, Cy iIs the dominant restriction. As x increases Cy and
C2 become equally dominant and, as x continues to increase, C;
becomes the restrictive cutset. The point of lowest variance
reduction apparently occurs where C1 and C, are approximately

equally dominant.

e e e, R S e e e e e e N e e et
. P I T L B R S N N
PRy s O WP WA P S WY 2

A O]




SRR R 20 ASCE ba 4 J0in i Sa - T sl tun vl Pimioh S inte menbilac iy CRM N - LA S T e Al A M S " S e e (P i ta A A Ayl Aah el el 4

-28_

Table 4 gives individual Okamoto and normal .95 confidence

intervals for {L(xi,r) 1Si$r} along with the sample skewness

based on (16). Although both sets of intervals give at least two -

TN

digit accuracy, the sample skewness encourages one to rely more RS

‘ - ..- -
5 on the Okamoto bounds for 900 s x £ 1300. S

Insert Tables 4 and 5 about here.

To demonstrate the credibility analysis of Section 4, Table

5 lists the bounds for the four criteria described there for

€] = € .01 and wj = w = .1 1%isr for Procedure MFBOUNDS and for
crude Monte Carlo sampling in Procedure MFCRUDE. Most notable is

the relative error criterion which shows that a bound less than

.1 is achieved with high certainty at K = 4096 in contrast to
Procedure MFCRUDE which does not achieve this bound with moderate
assurance even for K = 1048576. That is, MFCRUDE requires a
® sample size at least 1024 times larger than that for MFCRUDE to

achieve the same relative error criterion.

7. Essential Steps for Implementation

Here we list in appropriate order the essential steps needed
to implement the proposals in this paper.:

1. Select the time 1t of interest.

2. Select the flow set X = {xg=0<xq<...<xp}.
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3. Compute 0(t1) in (20) to check the appropriatenesss of
the normal model. If inappropriate, stop.

4, Select an error criterion and specify the corresponding
{e1,...,ep} and {wy,...,wp} (Section ¥).

5. Determine a set of edge-disjoin t cutsets
r*={cqy....,Cyl.

6. For each xeX, determine C(x,t) and N(x,t) using

Procedure A.

7. Use Procedure MFBOUNDS for the sampling experiment.
E 8. If the experiment is to be performed in blocks of
Fi Ky, Ky + Ko, Ky + Ko + K3... replications, then after

each block compute the credibility probability bound

j‘ for the selected error criterion. Suggested increments
é‘ are Kj; = Kj 2=V for i=1,2,...

}ﬁ 9. After completion of the experiment compute the sample .
:_“. .
3

- skewness in (16) and a confidence interval for each

f.': L{x,1) xeX XEX . ;_,__1
T
S

i
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Table 1

Capacity Parameters for
Network in Figure 1

arc j BJ(O) My 933
1 868.33 1.20 14.40
2 2532.62 3.50 122.50
3 1736.66 2.40 57.60
y 3473. 31 4,80 230.00
5 3618.03 5.00 250.00
6 723.61 1.00 10.00
7 3256.23 4,50 202.50
8 2170.82 3.00 90.00
9 1736.66 2.40 57.60

10 723.61 1.00 10.00
11 868.33 1.20 14.40
12 3256.23 4,50 202.50
13 1302.49 1.80 32.40
14 1809.02 2.50 6.25
15 863.33 1.20 14.40
16 2604.98 3.60 129.60
17 3618.03 5.00 250.00
18 2894 .43 4,00 160.00
19 1085. 41 1.50 22.50
20 1447.21 2.00 4,00
21 3256.23 4,50 202.50
22 2532.62 3.50 122.50
23 1809.02 2.50 62.50
24 1736.66 2.40 57.60
25 2170.82 3.00 9.00
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Table 2

Relevant Disjoint Cutsetsf

(r = 500)
i Xi Cixji,t) N(xji,1)
1 900 {1,2,3} .98627
2 1000 .97024
3 1100 .94105
Y 1200 .89306
5 1300 .82181
6 1400 .72628
7 1500 L .61062
8 1600 {14,20,25} .47865
9 1700 {1,2,3} .28163
10 1800 {14,20,25} .03775
11 1900 .oou1Y
12 2000 .00018

t {C(xj,1)} is computed as in (11). {N(xj,7)} is computed as in

. T
A s s

(12).

B B
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Table 3 A9\
Experiment al ResultsT Eé%::
P
(1=500, K=65536, T/T = .335) Nl
.95 confidence ;;
upper estimated interval el
flow bound estimate variance for R(x,t) .
X N(x,1) ﬂK(x,r) V(EK(x,r)) R(x,1) % x R(x,1) lower upper
900 .9863 -9861 .3170 x 1078 66.16 22,21 21.98  203.43 R
1000 .9702 .9696 .9856 x 1078 45.68  15.33 2422 86.99 ~<
1100 .9410 .9399 1668 x 1077 51.69  17.35 32.01  83.88
1200 .8931 .8906 3370 x 1077 44,12 14,81 32.02 60.96 T
1300 .8218 .8172 5754 x 1077 39.61 13.30 31.63 49.70 :r?
1400 .7263 7T .9358 x 1077 33.04  11.09 28.30  38.60 ;E;
1500 .6106 .5780 .2879 x 1076 12.93 N 3 12.08 1384 T
1600 .4787 .3670 .6252 x 1076 5.67  1.90 5.52 5.82 -
1700 .2816 .1392 .3025 1076 6.04  2.03 5.96 6.13
1800 .3775 x 107! .2411 x 107! .5016 x 1078 71.60  24.03 69.98 13.26 ’q
1900 4142 x 1072 1626 x 1072 .6243 x 10710 397,02 133.27 391.56  402.69 o
2000 .1788 x 1073 .3900 x 1074 .8321 x 107'3 7151.79 2400.65 7087.20 7219.18

f- ~
T and T were obtained from runs with MFCRUDE and MFBOUNDS respectively.
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Table 5
r

Credibility Analysis for 1-pr[ N Ij(xi,e,w)] 18j84
i=1

(e=.01, w=.1)

A, A, Ag A,
K MFBOUNDS MFCRUDE MFBOUNDS MFCRUDE MFBOUNDS MFCRUDE MFBOUNDS MFCRUDE
16 1.0000 1.0000  1.0000 1.0000  1.0000 1.0000  1.0000 1.0000
32
6l
128
256
Y
512 .0015  .6110
y % Y
1024 1704 1149 .0000  .2338 .2839
2048 .0259 | .0168 .0650 .0h27 LA,
45096 .0016  .7335 .0009 .0087 .0025 ..
8192 ,0000 .2018 .0000 .0003 .0000 ~j;'§
16384 .0229 .0000 -
32768 .0005
65536 .0000 -
131072 517 .7g77 o
262141 .7282 .7282 <_j_ﬁ
524288 .5215 .5215 .
1048576 K Y .3521 | 1 ‘ .3521 ‘;
.




Fig.l: Network
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